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Executive Summary

Canada, as with many other environmentally conscientious governments, is pursuing an agenda 

of an energy transition: away from fossil fuels, and toward a society increasingly driven by wind 

power, solar power, and hydropower. Polling suggests about 2/3 of Canadians generally look upon 

this approach favorably both in terms of cost and energy security.

Costs of onshore wind power and stand-alone commercial-scale solar power have declined, as 

supporters of these technologies have long promised, with the latest estimates of combined-cycle 

natural gas, on-shore wind, geothermal power, and stand-alone solar power all fall in the range of 

$36-$39/MWh.

But cost is only one obstacle to the wind- water- solar powered future. Three other physical 

challenges remain. These challenges include:

• Massive land consumption of wind- and solar-power generation which, even in this early 

phase of the energy transition is causing public unease, and pushback against many new 

projects associated with these low-density power source. When measured in 2010, for 

example, renewable energies generated 525 GW of power, but consumed 398,000 square 

kilometers – a stark contrast with natural gas power production which generated 3.53 

Terawatts of power while consuming only 1,800 square kilometers of land area. 

• Massive land disruption that will be required to mine the metals needed for these technolo-

gies, which also faces public resistance and opposition from ENGOs. 

• Massive new quantities of mining and refinement of metals and minerals will be required to 

produce and store wind- and solar-power at larger scales of deployment envisioned by advo-

cates of the renewable energy transition. On average, building wind and solar systems needs 

over 10 times the material compared to hydrocarbon-based machines providing the same 

energy. The International Energy Agency estimates that some 388 new metal mines will be 

required by 2030 to meet international EV mandates, which is considered as part of the clean 

energy transition. For context, as of 2021, there were only 270 metal mines operating across 

the US, and only 70 in Canada. IEAs estimates of mine-development timelines are also a bar-

rier to the renewable transition. Lithium production timelines, for example, are approximately 

6 to 9 years, while production timelines for nickel are approximately 13 to 18 years.
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• Wind and solar power, in contrast to conventional forms of electricity production, exhibit 

a lower Energy Return on Investment (EROI) as they produce lower levels of electricity per 

unit cost. Societies which direct resources into lower-return endeavors, such as wind- and 

solar power forsake the economic gains that would accrue from cleaving to energy sources 

that provide a higher economic return on investment, economic gains that are necessary 

for a society to prosper.
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Background

Advocates of a “renewable energy” future—a world powered by wind, sunlight, and falling water—

suggest these sources of energy, paired with battery storage systems or complex energy grids, can 

provide enough energy to replace that provided by current-day use of the much-maligned fos-

sil fuels, as well as satisfying demand for the energy needed moving forward to sustain modern 

technological economies.

The Canadian public generally favours the idea. According to polling firm Abacus Data,

• Two thirds [of Canadians] think a clean energy system1 would be more affordable than a 

fossil fuel energy system. This view is shared by a majority in every region or province, 

except for Alberta. Over seven in ten Liberal, NDP, and Green Party supporters feel this 

way, as do four in ten Conservative Party supporters.

• Two thirds [of Canadians] also think a clean energy system would be more secure—that 

is, a system where prices and supply are less influenced by global markets. This view is 

shared by a majority in every region or province, including in Alberta. Over three in four 

Liberal, NDP, and Green Party supporters feel this way, as do half of Conservative Party 

supporters. (Coletto, 2022)

One of the leading proponents of this idea is Professor Mark Jacobsen at Stanford University. 

Jacobsen has made a career of modeling scenarios under which wind power, solar power, and 

hydropower can provide all of the energy the world needs moving forward in a world of constrained 

greenhouse gas emissions. Jacobson’s renewable green deal for Canada (Jacobson et al., 2019) cal-

culates that Canada could get by with 100% energy generation from wind-, water-, and solar-power 

(WWS) by 2050. Still, “getting by” would not be the “same as”—Jacobson’s analysis suggests:

• 62% less overall energy demand by 2050 in the switch from the Business as Usual (BAU—

fossil fueled) scenario to wind, water, and solar, including the effects of reduced energy use 

1 “Renewable energy,” “clean energy,” and “green energy” are essentially interchangeable terms for the same 
basic idea: energies generated from moving wind, falling water, and shining sunlight that does not result in 
significant emissions of harmful substances. Nuclear power was not included in the Abacus polling.
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caused by the higher ratio of work output to energy input of electricity over combustion; 

eliminating energy used to mine, transport, and/or refine coal, oil, natural gas, biofuels, 

bioenergy, and uranium; and assumed policy-driven increases in end-use energy efficiency 

beyond those in the BAU case ;

• the capital cost for building out that new WWS system is estimated at a CA$700 billion;

• land consumption would be approximately 9 million km2, with a combined footprint and 

“spacing” areas of approximately 0.1% of Canada’s total land area;

• total jobs produced in Jacobson’s scenario add up to about 433,000, while about 590,000 

are lost, resulting in a net job-loss scenario of about 157,000. 

The expansions of wind- and solar- electric power production in Jacobson’s Canadian WWS 

scenario would be extremely aggressive. For example, wind power would grow from producing 

12.8 GW of power (combined on- and off-shore) in 2018 to producing 212.8 GW in 2050 (a 17-fold 

expansion), while solar power would grow from producing 3.1 GW in 2018 (combined residential/

commercial/utility) to producing 152.4 GW by 2050 (a 47-fold increase). Some of these expansions 

are beyond aggressive, starting with a baseline of zero generation in 2018 (table 1).

Economic challenges to the renewables transition

The economic feasibility of the renewable-energy transition has come to seem more plausible in 

recent years as the costs of wind- and solar- power have declined to rival that of traditional sources 

of power production such as combined-cycle natural gas power plants.

Table 1: Change in production capacity (GW) needed for the other forms of renewables in 
Jacobson’s WWS-2050 scenario for Canada

Onshore wind Off-shore wind Residential  
roof-top PV

Comm/gov’t 
rooftop PV

Utility PV CSP w/ storage

2050 183 29.8 11.7 98 34.3 0

2018 12.8 0 0.62 0.62 1.87 0

Increase factor 14 30 19 158 18 0

Geothermal 
electricity

Hydropower Wave Tidal Solar  
thermal

Geothermal

2050 5 80.8 4.05 2 8.42 1.47

2018 0 80.8 0 0.023 0 1.47

Increase factor 5 1 4 87 8 1

Source: Jacobson et al., 2019.
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An example of this type of analysis can be seen in table 2 in which the US International Energy 

Agency (EIA) has calculated comparative data on the costs of producing power—electricity, in this 

case—using different forms of generation. In table 2, the IEA shows the levelized cost of electrical 

power (weighted to account for different capacity factors of different energy sources). The capacity 

factor is a ratio of how much energy is actually produced by a given electricity generator compared 

to what its theoretical maximum capacity would be.

Readers will observe that, from table 2, the total levelized costs of electricity production are 

relatively close to each other, with combined-cycle natural gas, on-shore wind, geothermal power, 

and stand-alone solar power all in the range of $36–$39/MWh. Hybrid solar-power systems, with 

solar tracking capability and diurnal/seasonal storage are considerably more expensive, coming 

in at $58.62/MWh. This higher price for solar with storage is not surprising when one looks at the 

data for battery storage in IEA’s LCOE table. Battery storage, particularly, shows a levelized cost of 

Table 2: Levelized cost of electricity (capacity-weighted) and levelized cost of storage for new 
resources entering service in 2027 (in 2021 USD per megawatthour)

Plant type Capacity 
factor (%) 

Levelized 
capital cost 

Levelized 
fixed O&M 

Levelized 
variable  

cost 

Levelized 
transmission 

cost 

Total system 
LCOE  

or LCOS 

Levelized  
tax credit 

Total LCOE 
or LCOS 
including  
tax credit 

Dispatchable technologies 

Ultra-supercritical coal NB NB NB NB NB NB NB NB 

Combined cycle 87% $8.56 $1.68 $25.80 $1.01 $37.05 NA $37.05 

Advanced nuclear NB NB NB NB NB NB NB NB 

Geothermal 90% $21.80 $15.20 $1.21 $1.40 $39.61 −$2.18 $37.43 

Biomass NB NB NB NB NB NB NB NB 

Resource-constrained technologies 

Wind, onshore 43% $27.45 $7.44 $0.00 $2.91 $37.80 NA $37.80 

Wind, offshore NB NB NB NB NB NB NB NB 

Solar, standaloned 29% $26.35 $6.34 $0.00 $3.41 $36.09 −$2.64 $33.46 

Solar, hybrid 26% $39.12 $15.00 $0.00 $4.51 $58.62 −$3.91 $54.71 

Hydroelectrice NB NB NB NB NB NB NB NB 

Capacity resource technologies 

Combustion turbine 10% $55.55 $8.37 $49.93 $10.00 $123.84 NA $123.84 

Battery storage 10% $64.74 $29.64 $18.92 $11.54 $124.84 $0.00 $124.84 

Note: Levelized cost of electricity (LCOE) refers to the estimated revenue required to build and operate a generator over a 
specified cost recovery period.
Source: EIA, 2022: table 1a.
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electricity of $124/MWh (weighted), which is about three times the cost of generating a MWh of 

electricity directly from natural gas, on-shore wind, solar, or geothermal. However, it should also 

be noted that neither geothermal power systems nor natural-gas systems require battery backup 

power to generate dependable power. On this list, wind- and solar-power would require battery 

storage or other backup generation to accompany their direct output.

Caveats apply. EIA’s levelized cost of electricity estimates are broadly accepted in global policy 

discussions, but are not without controversy. The largest caveat is to understand that EIA’s levelized 

costs of power estimates are not the “pure cost” of generating electricity by the different means, 

but rather reflect that direct cost plus the costs of the regulatory systems (including environmental 

regulations) that have come to dominate power production. Thus, for example, some fuels that 

would have been included in the comparison matrix in the past are not even on the IEA’s menu 

as they would have been in previous years. Most developed countries have banned, or otherwise 

discontinued the use of coal (formerly the low-cost fuel) for electric-power generation. IEA’s cur-

rent list only includes “ultra-supercritical coal”, a technology that is vastly more expensive than 

conventional coal combustion. The same will be true of other forms of power-production: the lev-

elized cost estimates are generated within a framework of diverse policies that can raise or lower 

the costs of production of any given type of energy.

It is also important to note that the EIA levelized cost of electricity estimates have come under 

criticism for artificially lowering the apparent costs of wind- and solar-power by omitting various 

cost contributors to their implementation. As Benjamin Zycher, an energy policy analyst with the 

American Enterprise Institute observes in testimony given before the US Senate Committee on 

the Budget (March 29, 2023), these numbers must be considered lower-end estimates because they 

omit the costs of backup power for wind and solar power, and do not include additional costs to 

the electricity grid as a whole needed to accommodate the intermittency of wind- and solar-power 

production (Zycher, 2023).

Non-Economic—physical—challenges to the renewables transition

Cost and economic considerations, however, are only one dimension to the challenge faced when 

contemplating the transition of the world’s energy economy from its current admixture of sources 

(centered primarily in fossil-fuels and nuclear power) to the renewable energy world of proponents 

like Mark Jacobson. Other considerations, based more on the constraints of working within the 

limitations of physical laws or the limitations of engineering systems, have also gained attention 

in recent years. Much good work has been done on these questions by analysts such as Canada’s 

own Vaclav Smil, Distinguished Professor Emeritus at the University of Manitoba, and Mark 

Mills, a physicist and energy scholar at the US-based Manhattan Institute. Most of these analyses 

focus on what energy scholars call “energy density” or “power density”, but which are primarily 
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discussions of what one might call the land-consumption cost of energy. Another physically based 

critique of renewable energies is grounded not in space consumed, but materials produced and 

consumed to produce renewable energy. Still a third critique is based on the fundamental ques-

tion of the thermodynamic balance of energy use in society. This last thermodynamics challenge 

is more abstract, but in some ways more fundamental. It asks the critical question of any energy 

capturing or producing effort: does one get more energy out of an energy system than one must 

put into making it?

Land consumption
Several energy policy analysts have characterized the problem of the wind’s diffuse nature mainly 

in terms of land consumption. Essentially, to generate wind power one has to capture the kin-

etic energy of the wind over very broad areas. Perhaps the best known (certainly in Canada) and 

most highly published critic of wind- and solar-power on the basis of their low energy density 

is Vaclav Smil. Smil’s Energy at the Crossroads: Global Perspectives and Uncertainties is considered, 

by many, to be the authoritative text on this topic, still highly relevant though published back in 

2005 (Smil, 2005).

In Power Density: A Key to Understanding Energy Sources and Uses, Smil delivers a thorough sum-

mation of power density and how it relates to the various types of power used in modern societies 

(Smil, 2015). Smil’s particular focus has always been on land requirement, as the ultimate power 

density metric. What is immediately apparent from Smil’s calculations (table 3) is how much more 

land is required for power sources like wind power, solar power, and biofuels compared with more 

conventional energy sources like coal, oil, and natural gas. Coal, oil, and natural gas production 

require smaller amounts of land to generate significantly larger quantities of power. In 2010, for 

example, coal power required 4,700 km2 of land to support production of 4.72 Terawatts of power. 

Crude oil production needed 5,400 km2 of land to support production of 5.38 Terawatts of power. 

The story is very different for renewables such as wind and solar power. In table 3, renewables 

produced only 525 Gigawatts of power (a GW is 1,000th of a TW), yet occupied some 398,000 km2 

of land. That is mere thousandths of the energy generation capacity, requiring a thousand times 

more land. That reflects the concentration work that must go into generating equivalent power 

from renewable energy, compared with pre-concentrated conventional energy.

As indicated in table 4, the entire “modern energy system” had a small geographical footprint 

in 2010, of which wind and solar power were a small component. In 2010, the world’s energy sys-

tems required about 250,000 km2, less than 0.2% of ice-free land around the earth. Arable land 

and permanent crops accounted for 12.3% of the world’s ice-free lands (~50 times as much). Land 

consumption (and concomitant vista degradation) is already triggering public resistance to the 

further deployment of wind- and solar-power systems, even at today’s early progress on a path to 

a complete clean-energy transition. 
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Production and consumption of metals and minerals 
Mark Mills a physicist and prolific energy-policy scholar associated with the Manhattan Institute 

is one of the leading voices in discussions about the role of metals and minerals in the production 

of the technologies required for renewables and vehicle electrification. In his book, Mines, Minerals 

and “Green” Energy: A Reality Check, Mills looks at the materials side of the equation for renewable 

energy sources, also known as “green energy” sources (Mills, 2020).  At the start of the study, Mills 

observes that:

Table 3: Aggregate land claim (areas used in production) of the global energy system as of 2010
Process Power W/m2 ~km2 Process Power W/m2 ~km2

Fossil fuel extraction 13.63 TW 12,000 Nuclear plants 316 GW 500.0 600

Coal 4.72 TW 1,000.0 4,700 Renewable energies 525 GW 398,000

Crude oil 5.38 TW 1,000.0 5,400 Hydroelectricity 395 GW 3.0 131,700

Natural gas 3.53 TW 2,000.0 1,800 Geothermal electricity 8 GW 50.0 200

Crude oil refining 5.10 TW 5,000.0 1,000 Solar electricity 3 GW 5.0 600

Fuel transportation 27,000 Wind electricity

Hydrocarbon pipelines 8.03 TW 300.0 27,000 Turbine spacing 40 GW 1.0 40,000

Tanker terminals 2.21 TW 10,000.0 200 Footprint 40 GW 50.0 800

LNG terminals 364 GW 5,000.0 100 Modern biofuels 79 GW 0.3 263,300

Thermal electricity generation 1.86 TW 2,100 Electricity transmission 2.30 TW 30.0 58,000

Fossil-fueled electricity 1.54 TW 1,000.0 1,500

Note: The author is aware that these data from 2010 are by definition, dated, and current values will differ. It is offered only 
to give a relative sense of scale regarding the land consumed by various sources of energy production. The author was un-
able to find a more recent compilation that showed this relationship at the global scale.
Source: Smil, 2015.

Table 4: Land areas modified by all human actions, as of 2010
Activity Area  

(1,000km2)
Percentage of 
ice-free land

Activity Area  
(1,000km2)

Percentage of 
ice-free land

Arable land and permanent crops 16,000 12.3 Reservoirs 600 0.5

Area affected by logging 3,000 2.3 Fossil fuels extraction 15 0.01

Forest and tree plantations 3,000 2.3 Rights-of-way (pipelines, HV lines) 90 0.07

Urban areas (incl. roads) 4,000 3.1 Hydro reservoirs 150 0.1

Impermeable surfaces 600 0.5 Modern energy system ~250 <0.2

Source: Smil, 2015.
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… all energy-producing machinery must be fabricated from materials extracted from the earth. 

No energy system, in short, is actually “renewable”, since all machines require the continual 

mining and processing of millions of tons of primary materials and the disposal of hardware 

that inevitably wears out. Compared with hydrocarbons, green machines entail, on average, a 

10-fold increase in the quantities of materials extracted and processed to produce the same 

amount of energy. (Mills, 2020: 4)

For example, Mills observes, “replacing the energy output from a single 100-MW natural gas-fired 

turbine, itself about the size of a residential house (producing enough electricity for 75,000 homes), 

requires at least 20 wind turbines, each one about the size of the Washington Monument, occupy-

ing some 10 square miles of land” (Mills, 2020: 6).

But the land requirement (as calculated by Smil) is really only half the point. Mills goes on to 

explain that “building a single 100-MW wind farm—never mind thousands of them—requires some 

30,000 tons of iron ore and 50,000 tons of concrete, as well as 900 tons of nonrecyclable plastics 

for the huge blades. With solar hardware, the tonnage in cement, steel, and glass is 150% greater 

than for wind, for the same energy output” (Mills, 2020: 6).

Mills raises another aspect about the materials needed for renewable energy generation that 

also gets little attention in the mainstream press, the issue of “overburden”, that is, the quantity 

of raw materials that must be moved and processed to reach needed ores, such as copper. Mills 

observes, for example: “While ore grades vary widely, copper ores typically contain only about 

a half percent, by weight, of the element itself: thus, roughly 200 tons of ore are dug up, moved, 

crushed, and processed to get to one ton of copper. For rare earths, some 20 to 160 tons of ore are 

mined per ton of element. For cobalt, roughly 1,500 tons of ore are mined to get to one ton of the 

element” (Mills, 2020: 6).

Interestingly, in this study, Mills debunks an old idea heavily favoured by conservative and liber-

tarian policy analysts in the past, which is the idea made most famous by economist Jesse Ausubel 

and his collegues in their seminal paper, Dematerialization (Herman, Ardekani, and Ausubel, 1990) 

and updated later in Dematerialization: Variety, Caution, and Persistence, that modern economies 

“dematerialize” over time: that is, they use less and less material (in both absolute terms and per-

unit of GDP growth) simply as a result of the market’s pressure to seek efficiencies (Ausubel and 

Waggoner, 2008). But, as Mills observes in the case of various global materials, the dematerializa-

tion is not offsetting growth in net consumption: “Wealthy economies have become more efficient, 

and the rate of economic growth has outpaced a slower rise in overall material use. But greater 

economic efficiency in material use slows the growth rate—it is not a fundamental decoupling of 

materials from growth” (Mills, 2020: 10).

Mills offers more examples of the materials intensity of components of a renewable energy 

future in testimony given to the Unites States Senate:
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The battery for a single electric-car weighs about 1,000 pounds. About 50 pounds of oil can 

provide the same vehicle range. Fabricating that single battery involves digging up, moving and 

processing more than 500,000 pounds of raw materials somewhere on the planet. Meanwhile, 

measured over the lifespan of the battery (seven years), using oil involves one tenth as much 

in cumulative material weight extracted from the earth to deliver the same vehicle-miles.

Or consider one more example. Building one wind turbine requires 1,500 tons of iron ore, 2,500 

tons of concrete, and 45 tons of non-recyclable plastic. For an equal amount of energy production, 

solar power requires even more cement, steel and glass—not to mention other metals. Increasing 

the wind and solar share to, say, just a one-third share of America’s energy arithmetically requires 

a 1,000% increase in the materials already consumed to produce such machines. (Mills, 2019: 2)

A caveat is warranted here: as readers will have noted, systematic data on these issues are limited, 

that is, there is no broad survey listing the power output and land consumed by all of the county’s 

energy facilities. Both Smil and Mills have generated and reported small slices of data in time—

snapshots of a subset of representative facilities.

Recently, as part of a longer study on the metal/mineral requirements of the world’s proclaimed 

Electric Vehicle (EV) transition, I looked into the question of whether the world’s metals and min-

erals production could keep pace with demand (Green, 2023). My conclusion was that this is dubious. 

The International Energy Agency (IEA) projects growth in mineral demand for EVs through 2040 

under two scenarios, one called the Stated Policy Scenarios, which is based on what world govern-

ment’s have pledged to achieve pursuant to the Paris climate accord, and Sustainable Development 

Scenarios developed by the EIA. Mineral demand for EV’s in the Sustainable Development Scenarios 

is projected to grow 30-fold between 2020 and 2040, with demand for lithium and nickel growing 

approximately 40-fold (IEA, 2021b). The IEA also projects expected mineral demand specifically 

from battery storage in EVs, from 2020 to 2040. Mineral demand for storage, according to the IEA, 

is expected to grow 30-fold from 2020 to 2040, while demand for nickel and cobalt will grow 140-

fold, and 70-fold, respectively (IEA, 2021b).

How will all of this play out with regard to mining of EV battery metals and minerals? In its 

Global Electric Vehicle Outlook 2022 (IEA. 2021a), the IEA again offers estimates for two scenarios, 

an “Announced Pledges” scenario—a variation on the STEPS scenario based on established govern-

ment pledges—and a Stated Policies scenario based on additional proposed government policies. 

In these scenarios, the IEA suggests that fifty new Lithium mines are needed by 2030, along with 

60 more Nickel mines; and 17 more cobalt mines. The materials needed for cathode production 

will require 50 more mines, and anode materials another 40. The battery cells will require 90 more 

mines, and the EVs themselves another 81 (IEA, 2021a). The IEA suggests that to meet international 

targets for renewables deployment 388 new mines will be required by 2030.
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For context, as of 2021, there were only 270 metal mines operating across the United States, 

and only 70 in Canada. Such expanded mining is entirely unlikely to appear, considering that min-

ing and refining facilities are both slow to develop and are highly uncertain endeavours plagued by 

regulatory uncertainty and by environmental and regulatory barriers. Lithium production timelines, 

for example, are approximately six to nine years, while production timelines (from application to 

production) for nickel are approximately 13 to 18 years according to the IEA (IEA, 2021a).

However, historic trends in mining, at least in the United States, do not provide mwuch confi-

dence to the idea of a massive, rapid increase in the production of EV metals or other mined materi-

als. The US National Institute of Occupational Safety and Health (NIOSH) data show that, in the 

United States at least, the number of active mines has declined steadily since 1983 (approximately 

17,000 active mines), with metals production rising briefly from 2000 to 2010 (to about 15,000 

active mines, and slowly declining to 2021 to a bit more than 12,000 active mines operating in the 

United States (CDC, 2023).
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Energy Return on Investment—a Thermodynamic  
Frame of Analysis

Another way to compare different forms of energy in a more physical, less economic framework, is 

to look at something called the Energy Return on Investment, or EROI. The concept is developed 

in Energy Return on Investment: A Unifying Principle for Biology, Economics, and Sustainability, by 

Charles A.S. Hall (Hall, 2017). The “EROI stands for Energy Return On Investment, and refers most 

explicitly to the ratio of energy delivered to an organism or society from one energy unit invested 

in getting that particular energy” (Hall, 2017: 107). 

EROI is formally defined as a ratio:

Energy returned from an energy-gathering activity
EROI = 

Energy used to get that energy

Hall views achieving a net-positive EROI as an imperative for human societies as well as indi-

vidual organisms; and not a small one. He develops the argument with analogy to a farmer deliv-

ering food to the consumer. 

Hall et al. (2014) examined the EROI required to actually run a truck and found that if the 

energy included was enough to build and maintain the truck and the roads and bridges 

required to use it (i.e., depreciation), one would need at least a 3:1 EROI at the wellhead to 

put one unit of gasoline into the truck. Now if you wanted to put something in the truck, say 

some grain, and deliver it that would require an EROI of, perhaps, 5:1 to grow the grain. If you 

wanted to include depreciation on the oil field worker, the refinery worker, the truck driver 

and the farmer you would need an EROI of say 7 or 8:1 to support the families. If the chil-

dren were to be educated you would need perhaps 9 or 10:1, have health care 12:1, have arts 

in their life maybe 14:1 and so on (the numbers below 3:1 are fairly accurate, and above are 

speculative). (Hall, 2017: 154)

Hall’s work, combined with that of others, suggests that “the EROI to run modern industrial-con-

sumer societies is probably much higher, probably from 10:1 to 15:1 at a minimum if we are to sup-

port families, health care, education, the more complex arts, and so on” (Hall, 2017: 154).
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Hall’s Mean EROI values for thermal fuels are shown in table 5, below (values extracted from 

graphic representations, and are visual estimates of the author). Table 6 below shows the EROIs 

for today’s common forms of energy (thermal fuels and electricity production)

One immediately notes from table 5 that the high-energy density of coal, oil, and natural gas, 

come in well above the 10:1–15:1 EROI threshold. Oil shale and oil sands (as will be discussed more 

below) are near the cut-off, while biofuels fall short. In table 6, we can see that taking advantage of 

the Earth’s supply of falling water (hydroelectric power) commands a huge EROI advantage, per-

haps explaining why water-wheels were some of the earliest technologies known to harness power. 

Other sources of electric-power production hover much closer to the 10:1–15:1  EROI threshold.

Hall’s computations are of particular interest to Canadian readers, as he shows the trends for 

EROI for Canada’s oil sands (sometimes referred to as “tar sands”). EROI for depletable resources 

changes over time, which is an important distinction when comparing renewable and depletable 

forms of energy production. As the highest quality sources of depletable production are consumed, 

lower quality sources produce less fuel, generally at higher costs. Hall notes a declining EROI for 

oil sands from approximately 35:1 in 1989 to only about 15:1 in 2010. It should be noted that this 

data series ended in 2010, and there have been significant changes in the way that oil (tar) sands 

are produced in Canada that could have shifted their EROIs higher (Hall, 2014). The author could 

not identify any more recent EROI analysis of Canadian energy production.

Hall’s work is not without controversy, however, particularly his assessments of the EROI of 

renewable energies, other than hydroelectric power. Advocates of wind- and solar-power, not sur-

prisingly, are strongly critical of the idea both on technical and ideological grounds. A 2019 study, 

Estimation of Global Final-Stage Energy-Return-on-Investment for Fossil Fuels with Comparison 

to Renewable Energy Sources, conducted by a research team at the University of Leeds, looks 

at EROI both as a stand-alone calculation, as well as EROI as delivered to end use. The authors 

Table 5: Mean EROI values for thermal fuels 
based on published values

Fuel EROI

Coal ~45:1

Oil and Gas (world) ~20:1

Oil Shale ~10:1

Ethanol from biomass ~8:1

Tar Sands ~5:1

Diesel from biomass ~2:1

Source: Hall, Lambert, and Bologh, 2014.

Table 6: Mean EROI values for electricity 
generation systems based on published values

Generation system EROI

Hydroelectric ~80:1

Wind ~24:1

Coal ~12.:1

Nuclear ~12:1

Solar (Photovoltaic) ~11:1

Geothermal ~10:1

Natural gas ~5:1

Source: Hall, Lambert, and Bologh, 2014.
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find that EROIs without final delivery costs, while declining over time as highest quality reserves 

are consumed to still be reflective of Hall’s earlier work and far higher than EROIs of renewables 

(Brockway, Owen, Brand-Correa, and Hardt, 2019):

We estimate that the average EROI for all fossil fuels has declined by around 23% in the 16-year 

period considered (37:1 to 29:1). These are similar magnitudes (see table 1) and rates of decline to 

other published estimates. The aggregate results for all fossil fuels represent a combination of dif-

ferent trends for different kinds of fuel. All types of fossil fuels show a declining trend. The EROI 

for coal starts at the highest value (50:1) in 1995 but declines sharply, by 42%, to reach ratios sim-

ilar to the other fossil fuels in 2011 (about 29:1). This strong decline is largely driven by increasing 

use of indirect energy in Chinese coal production. EROI ratios for oil and gas are much lower but 

also decline less strongly. EROI for oil production declines by 19% from 35:1 to 28:1. EROI for gas 

production declines by 10% from 32:1 to 29:1.

Brockway and his colleagues also calculate EROI as final delivered energy, that is, energy not 

simply at the point of first generation, but on arrival to the individual user (end-use). After this cal-

culation, the EROI for all of the fossil fuels declines to 6:1, only slightly better than that of recent 

renewables. However, the author believes that extending EROI analysis to the point of end-point 

delivery clouds the situation more than it reveals, since the points post production of the “first” 

energy carrier—the barrel of oil, the ton of coal, the cubic meter of natural gas, the first electrons 

off the solar cells, the first electrons out of the wind turbines—are far more subject to governmental 

decision making, more than the intrinsic thermodynamic estimation of EROI.

In their article, Energy Return on Investment of Major Energy Carriers, Murphy and his col-

leagues also make a strong rebuttal to previous EROI research that showed wind- and solar-power to 

have insufficiently strong EROIs to be considered economically viable (Murphy, Raugei, Carbajales-

Dale, and Estrada, 2022). Their final EROI analysis, in fact, stands previous understandings on their 

heads and suggests that, while wind- and solar-power (and hydropower) all have EROIs above 10 

(the threshold for economic viability), conventional fossil fuels are the energy sources that come 

up short on EROI, being well below a 10-fold return on investment. However, as with the Leed’s 

study, the work of Murphy and his colleagues is not directly comparable to the works mentioned 

previously as their framework of analysis is different. While Hall studied the EROI at the point of 

production (the well-head for oil, for example), they extend the framework of analysis out to the 

point of end use. What this means, in essence, is that they include the “pure EROI” but adds in the 

costs of energy conversions, transmission, and then final use. While this analytic framework will be 

satisfying to renewables champions, it will not likely convince the originators of the EROI frame-

work of analysis (as it does not convince the author), because the majority of these parts of the 

overall energy distribution system are overwhelmingly subject to government intervention, regula-

tion, and development, and are therefore, properly, not seen as something intrinsic to the thermo-

dynamic nature of the various forms of energy transformed and consumed in modern societies.



fraserinstitute.org13

Conclusion and Policy Implications

A “clean energy transition” has been proposed, and is widely viewed positively, in which developed 

societies (such as Canada) transition from the use of fossil fuels to produce power, to using wind-, 

solar-, and hydro-power exclusively for this purpose. But looking outside direct economic evalua-

tions of feasibility, it is clear that there are physical barriers to the wind, water, solar transition that 

still pose significant challenges to its feasibility. 

• Land consumption (or occupation by wind- and solar-farms) is one such barrier. Wind and 

solar power must channel and concentrate the diffuse energy of wind and sunlight over 

very large expanses of terrain: orders of magnitude larger than conventional fossil-fuel, 

nuclear, or hydro-power production. This land consumption has already resulted in resist-

ance to development of new wind and solar installations in several countries further along 

in the quest for the clean energy transition, such as Germany, the United Kingdom, and 

the United States (Bryce, 2021).

• Land disruption for mining, and the needed increase in mining of metals also remains 

a significant barrier to the clean energy transition as wind- and solar-power, as well as 

vehicle electrification, which is often included in the concept of the clean energy transition, 

require massive increases in the production of a number of metals which require extensive 

mining and refinement, and the movement of massive amounts of material in the process.

• Thermodynamic constraints of energy consuming societies—the need for society to obtain 

a strong, positive net return on energy investment, that is, to get at least 10 times to 15 

times more power out of an energy production system than must be invested into it up 

front poses a serious challenge to the utility of wind- and solar-power. Wind- and solar-

power generate modest energy returns on investment (below the 10:1–15:1 EROI considered 

needed for viability in powering society) while conventional forms of power production 

fare much better in a thermodynamics-based “Energy Return on Investment” framework, 

producing well above the 10:1–15:1 return on energy investment needed to be considered 

economically viable for energy-intensive societies.
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